Abnormality Detection in a Landing Operation Using Hidden Markov Model

Authors

  • Alireza Seyedin Data fusion Laboratory, Electrical Engineering Department, Ferdowsi University, Mashhad, Iran
  • Hasan Keyghobadi Data fusion Laboratory, Electrical Engineering Department, Ferdowsi University, Mashhad, Iran
Abstract:

The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in various flight conditions. The current methods have some limitations and are based on studying the risks and measuring the effective parameters. These parameters do not remove the dependency of a flight process on the time and human decisions. In this paper, we used an HMM-based method which is among the main methods of situation assessment in data fusion. This method includes two clustering levels based on data and model. The experiments were conducted with B_777 flight data and the variables considered in the next generation of ADS_B. According to the results of this study, our method has high speed and sensitivity in detection of abnormal changes which are effective in the flight parameters when landing. With the dynamic modelling, there is no dependency on time and conditions. The adaptation of this method to other air traffic control systems makes its extension possible to cover all flight conditions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

abnormality detection in a landing operation using hidden markov model

the air transport industry is seeking to manage risks in air travels. its main objective is to detect abnormal behaviors in various flight conditions. the current methods have some limitations and are based on studying the risks and measuring the effective parameters. these parameters do not remove the dependency of a flight process on the time and human decisions. in this paper, we used an hmm...

full text

Intrusion Detection Using Evolutionary Hidden Markov Model

Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training,  ...

full text

tuberculosis surveillance using a hidden markov model

background: routinely collected data from tuberculosis surveillance system can be used to investigate and monitor the irregularities and abrupt changes of the disease incidence. we aimed at using a hidden markov model in order to detect the abnormal states of pulmonary tuberculosis in iran. methods: data for this study were the weekly number of newly diagnosed cases with sputum smear-positive p...

full text

Introducing Busy Customer Portfolio Using Hidden Markov Model

Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...

full text

Modelling Intrusion Detection System using Hidden Markov Model: A Review

Information security has become a major concern to various businesses and organizations and requires an intelligent security system that can automatically detect the intrusions. An Intrusion Detection System (IDS) is used for this purpose. An Intrusion Detection System has become popular tool for observing patterns of activities in user accounts and detects malicious behaviour. Hidden Markov Mo...

full text

Credit Card Fraud Detection Using Hidden Markov Model-A Survey

Due to a rapid advancement in the electronic commerce technology, the use of credit cards has dramatically increased. As credit card becomes the most popular mode of payment for both online as well as regular purchase, cases of fraud associated with it are also rising. In this paper, we model the sequence of operations in credit card transaction processing using a Hidden Markov Model (HMM) and ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 1

pages  31- 37

publication date 2017-03-16

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023